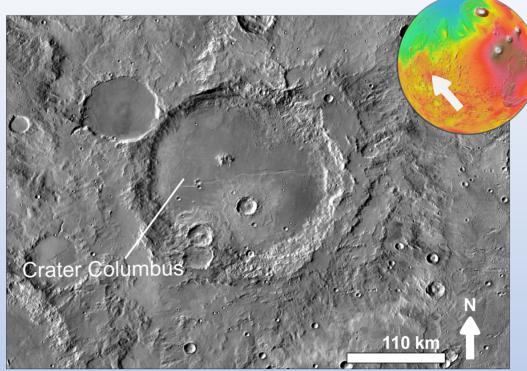
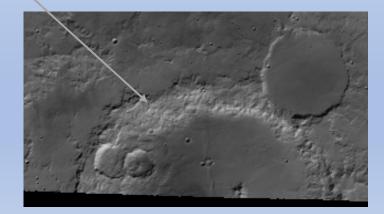
Understanding Chlorine Salt Spectra Through Computational Methods with Implications for Martian Geochemistry

Rachel Huchmala, Northern Arizona University Mentor: Dr. Jennifer Hanley, Lowell Observatory


College of Engineering, Forestry, and Natural Sciences


Motivation: Columbus Crater

- Continued exploration of Mars has led to a need to characterize the toxicity and habitability of the planet.
- We have focused on Columbus Crater which contains a "Bathtub Ring" of hydrated minerals.
- By mapping the distribution of these minerals, we can determine potentially toxic areas.

"Bathtub Ring"

Image complied from: NASA THEMIS and MOLA data

Data: Compact Reconnaissance Imaging Spectrometer

- The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) collects visible and infrared spectra.
- For each pixel of a CRISM image, there is a corresponding spectra in the wavelength range from 0.362-3.92 microns.
- Using the near-infrared spectra, we can start to distinguish minerals in the salt ring of Columbus Crater.

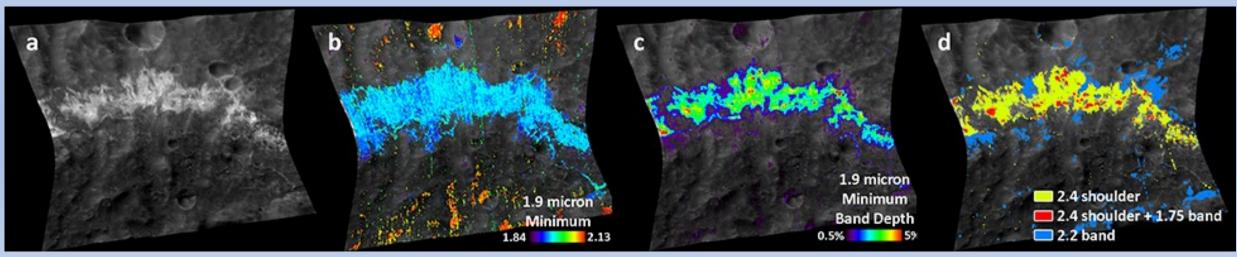


Image From: Hanley et al, LPSC (2017)

Making the Distinction

- Laboratory spectra from Hanley et al. [2015] show bands for magnesium perchlorate hexahydrate at 2.12 µm and 2.20 µm that are unique, but a result of some unknown cause.
- Could finding possible causes of these absorptions be the key to making the distinction?

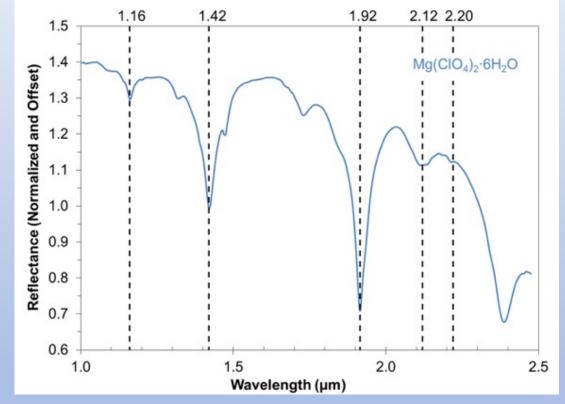
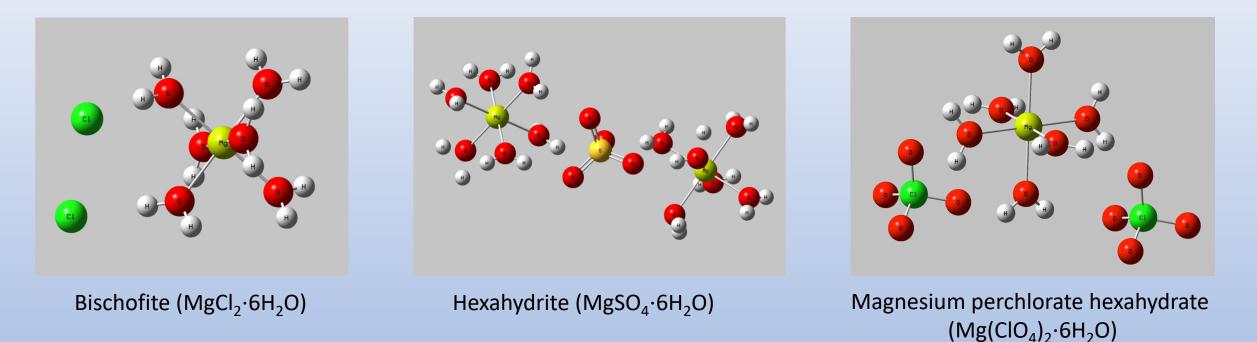
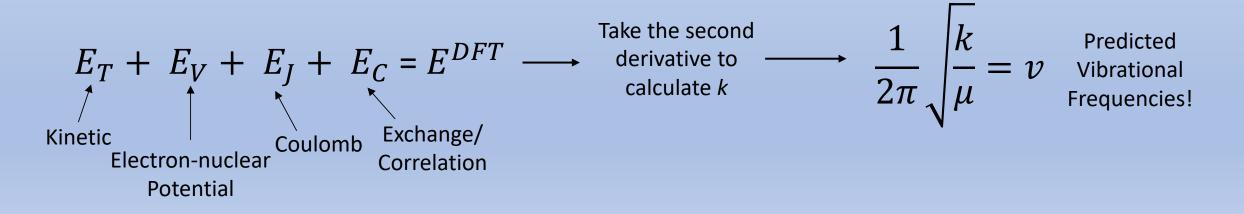
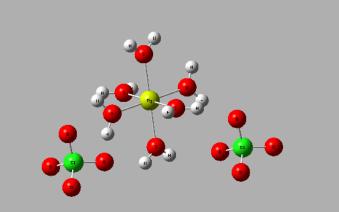



Image from: Hanley et al., JGR (2015)


Spectral Properties


- Due to the structural similarities, the infrared spectra are very similar.
- Making this determination is crucial, as perchlorates can be toxic, especially to humans, and cause a much lower freezing point depression of water.

Methods: Density Functional Theory

- The electronic wave function is constructed with the 6-31G basis set, which represents core atomic orbitals by one set of Gaussian functions and valence atomic orbitals by two sets of Gaussian functions.
- We use cam-B3LYP, a hybrid functional of Hartree-Fock exchange and DFT correlation exchange with a split-valence basis set, 6-31G.

Analysis

Magnesium perchlorate hexahydrate (MgClO₄ \cdot 6H₂O)

Fundamental Vibrational Mode	Stretch Type	Computational Frequency (µm)
ν _{asy(H2O)}	Asymmetric Water Stretch	2.51
$oldsymbol{ u}_{ m sys(H2O)}$	Symmetric Water Stretch	2.58
ν _{syb(H2O)}	Symmetric Water Bend	5.94
ν _{asy(ClO4)}	Asymmetric Perchlorate Stretch	7.42
ν _{sys(ClO4)}	Symmetric Perchlorate Stretch	8.99
ν _{asb(H2O)}	Asymmetric Water Bend	17.50

Computing Overtones and/or Combinations

- Overtone: Multiples of a fundamental vibrational mode
- Combination: Sum of fundamental vibrational modes and/or overtone bands
- Using the fundamental modes that were calculated, possibilities for the 2.12 μm and 2.20 μm bands are as follows:
 - $v_{sys(H2O)} + v_{sys(CIO4)} = 2.00 \,\mu m$
 - $v_{asy(ClO4)} + 2(v_{sys(ClO4)}) + v_{asb(H2O)} = 2.11 \, \mu m$
 - $2(v_{asy(CIO4)}) + v_{sys(CIO4)} + v_{asb(H2O)} = 2.27 \,\mu m$

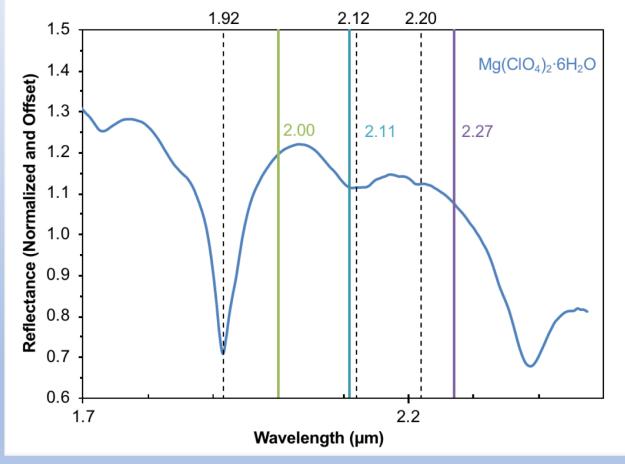


Image from: Hanley et al., JGR (2015)

Conclusions

- Our method is working!
- Identifying the fundamental modes of magnesium perchlorate hexahydrate, has provided us with a basis for calculating overtones.
- Results from these computations have enabled us to assign fundamental vibrations of commonly found stable salts on Mars.

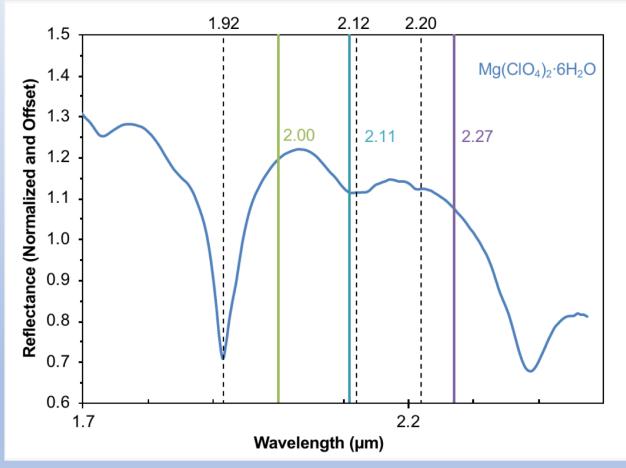


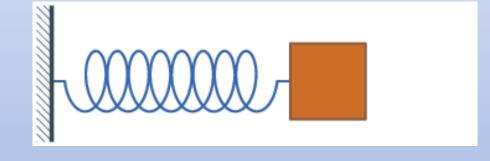
Image from: Hanley et al., JGR (2015)

Acknowledgments

I'd like to thank...

- The NASA/NAU Space Grant
- Dr. Jennifer Hanley, my project mentor
- Dr. Gerrick Lindberg, my computational research mentor
- My officemates for dealing with me yelling at my computer.

College of Engineering, Forestry, and Natural Sciences



Back-up Slides

Vibrational Spectra

- From the simple harmonic oscillator, we know:
 - Hooke's Law: $F = -k \cdot X$
 - The frequency of a vibration is defined by the equation:

$$v = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

- The frequencies are then seen in an infrared spectra.
- The force constant (k) is obtained by taking the second derivative of the potential energy.

Water Fundamentals

Magnesium Perchlorate Hexahydrate (Mg(ClO₄)₂·6H₂O)

		Experimental		
Assignment	Computational	Hanley <i>et</i> <i>al.</i> , 2015 [4]	Bishop <i>et al.,</i> 2014 [6]	Hunt 1977 (Ice/Liquid) [7]
Asymmetric Stretch	2.51	2.76	2.77	(v ₃) 2.94/2.66
Symmetric Stretch	2.58	2.76	2.77	(ν ₁) 3.10/2.74
Symmetric Bend	5.94	6.04	6.06	(v ₂) 6.06/6.27

Hexahydrite (MgSO₄ \cdot 6H₂O)

		Experimental	
Assignment	Computational	Cloutis <i>et al.,</i> 2006 [8]	Hunt 1977 (Ice/Liquid) [7]
Asymmetric Stretch	1.32	1.75	(v ₃) 2.94/2.66
Symmetric Stretch	2.59	2.54 (2.45)	(v ₁) 3.10/2.74
Symmetric Bend	6.25		(v ₂) 6.06/6.27

Bischofite (MgCl₂ · 6H₂O)

	Computational	Experimental		
Assignment		Hanley <i>et</i> al., 2014 [5]	Hunt 1977 (Ice/Liquid) [7]	
Asymmetric Stretch	2.37	2.42	(v ₃) 2.94/2.66	
Symmetric Stretch	2.55	2.82	(v ₁) 3.10/2.74	
Symmetric Bend	6.22	6.11	(v ₂) 6.06/6.27	